Novel Anticancer Drugs on the Basis of Diversely Functionalized N-Containing Heterocycles

ABSTRACT

"Corresponding pyrroline and pyrrole precursors of Rigidin 35 compound were synthesized and isolated with moderate yields. The new compounds were tested against different cancer cell lines. The compounds exhibit submicromolar antiproliferative activity. Pyrrole and Rigidin 35 show similar killing effects against cancer cells. Correspondent pyrrolines and pyrrolopyrimidines have cytostatic plato and show much stronger toxicity in high concentrations."

BACKGROUND AND SIGNIFICANCE

Cancer is a family of diseases in which diseased cells multiply without control.

> The diseased cells can form tumors when they multiply uncontrollably in one area. These tumors can travel away from the area of incidence causing a disruption of multiple, vital physiological mechanisms.

>14 million people worldwide each year suffer from one of the more than 200 forms of cancer.

> The focus of this project was to synthesize intermediates of an existing reaction that created a cancer treating drug, Rigidin 35, in order to improve upon the properties and efficacy of the drug.

>The Rigidin family was synthesized through novel methods.

> The Rigidin family exhibited submicromolar to nanomolar antiproliferative potencies against a panel of cell lines including metastatic cell lines and cells lines with dismal prognosis.

A selected representative (Rigidin 35) was found to inhibit microtubule dynamics in cancer cells, lending evidence for tubulin targeting as a mode of action for these compounds in cancer cells.

> The impressive killing of cancer cells with Rigidin 35 led to the inquiry about the intermediates of the reaction. This led to this project focusing on synthesizing and testing pyrroles and pyrrolines of the Rigidin 35 reaction.

Fig. 2. The reaction scheme used to synthesize Rigidin 35.

ACKNOWLEDGEMENTS

We would like to thank Alex Pendleton, Lindsay Candelaria, Dr. Liliya Frolova, and Dr. Snezna Rogelj for all of their help and direction. We would also like to thank the entire CSBC team for their continued friendship and support. We would like to thank NM- INBRE and New Mexico Tech for continued support and our funding.

REFERENCES

Scott, Robert, and et. all. "Synthetic and Biological Studies of Tubulin Targeting C2-Substituted 7-Deazahypoxanthines Derived from Marine Alkaloid Rigidins." ChemPubSoc 9 (2014): 1-10. Print. Magedov, Igor, and et. all. "Novel three-component synthesis and antiproliferative properties of diversly functionalized pyrrolines." Bioorganic & Medicinal Chemistry Letters 18 (2008): 1392-1396. Print.

Kailee Zingler^{1,2}, Channelle Salazar^{1,2}, Liliya Frolova¹, Snezna Rogelj² ¹ New Mexico Tech, Department of Chemistry, Jones Hall 259, 801 Leroy Place, Socorro, NM 87801 ² New Mexico Tech, Department of Biology, 801 Leroy Place, Jones Annex, Socorro, NM 87801

MATERIALS AND METHOD

Rigidin 35 precursors are synthesized from a correspondent sulfonant reaction with methane sulfonyl hydrochloride or 4-methoxyphenyl s chloride and acetaphenone hydrochloride each reacting with two equ triethylamine over ice for four hours. Structure was confirmed by ¹I

Reaction schemes for the pyrroline precursors are driven by a multiprocess involving the correspondent sulfonamide, benzaldehyde, and cyanoacetamide, modelled after Rigidin 35, or malonitrile as reagent triethylamine as the catalyst. These are one pot reactions, contents v overnight. The products were separated via column chromatography hexanes and ethyl acetate. Structures were confirmed by ¹H NMR.

The malonitrile pyrrolines were successfully oxidized and cyclized. T was conducted with DDQ. The cyclizations were conducted with form

Biological Testing: Toxicity was tested against cervical cancer cell line of 4,000cells/well in a 96 well plate. Cells were treated with the drugs for 48 was tested with MTT assays. The testing was done to determine the GI50, the 50% of maximal inhibition of cell proliferation.

Fig. 1. Worldwid Cancer **Statistics**

DS					
nide. A ulfonyl	Table 1: GI50	s for drugs or	n HeLa Cells	Fig. 10(a	
I NMR.		Name	GI50(µM) on HeLa		
	Ri	gidin 35	0.02372		
Fig. 3. The	Ру	rrole 35	19.58		
scheme of	KCC1:	KCC1: Pyrroline 35		20 - 160	
sulfonamide.	KCM1	1. isomer 1	>100	Contra 1	
	KCM1	2: isomor 2	>100	= = = =	
component			/100	File: FA	
d either					
ts along with		AV1	1.2581	In figu	
with		AV3	12.72	AVI.	
		AV4	92.19	this dr	
Fig. 4. The reaction scheme for KCC1	In figures 11(a	a-d) below are	e the GI50 graphs o Rigidin	of the most ad	
Fig. 5. The reaction scheme for KCM1.1&1.2		0.500 E S S O O O O O O O O	Treatment (uM c	Image: Contract of the second seco	
Fig. 6. The	Fig. 11 ((a-h), 11a: Rig	idin 35		
scheme for KCM2	C)	1.600 1.500 1.400 1.300 1.200	AV1		
Fig. 7. The reaction scheme of synthesis AV1		1.100 1.000 0.900 0.800 0.800 0.600 0.600 0.400 0.300 0.200 0.100 0.000	0 0 0.39 0.78 1.56 3.125 Treatment (uM c	6.25 12.5 25 50 of compound)	
	Fig. 11 (c-d). 11c: AV1			
Fig. 8. The reaction scheme of synthesis of AV3	These graphs show the clear differences in activity betw kills at nanomolar concentrations. The pyrroline based direktills completely. The cyclized form of the malonitrile based KCC1. The cyclized form of the malonitrile methoxy phene				
Fig. 9. The			Co	NCLUS	
reaction scheme of synthesis of AV4	 A new multicomponent synthesis for precursors of Rigid synthesis using correspondent sulfonamide with organic ba The reaction of malonitrile pyrrolines and derivatives th intermediates of the Rigidin 35 reaction. Only one isomer of the malonitrile pyrrolines was able to 				
HeLa at a density hours. Cell viability e concentration for	 step being oxidation to pyrroles before cyclization, fixing t Antiproliferative activity of all compounds was tested. O Future work for this project will include SAR for pyrroli Perfecting a reaction scheme for the cyanoacetamide pyr 				

RESULTS

a-b): Cell Cycle Analysis via Flow Cytometry 10b: 5µM AV1 Treated **Oa:** Control

ures 10(a-b) above are the cell cycle graphs of Jurkat cells treated with 5µM of The M1 peak is smaller compared to the M3 peak showing that the drug pushed the into G2/M. It is important to note a lot of cell death occurs at this concentration and rug is a tubulin binder leading to deformity

ctive compounds.

11d: AV3

ween the structurally very similar compounds. The Rigidin 35 has an excellent GI50 and ectly on Rigidin, KCC1, has a good GI50, a cytostatic trend similar to Rigidin 35, and d pyrroline, AV1, also shows cytostatic activity and with an even better GI50 than yl pyrroline also has cytostatic activity and with a fairly good GI50.

SIONS & FUTURE WORK

din 35 and their penta substituted analogs was developed on the basis of a one pot ase catalysts.

nereof has been much more successful than that of the cyanoacetamide pyrroline

o be cyclized into pyrrolinopyrimidine using formic acid directly, which lead to the first the problem.

Dxidation of pyrrolines into pyrroles and cyclization increased activity.

lines, correspondent pyrroles and the products of their cyclization.

crolines will also be created.